Two-Way Feature Extraction Using Sequential and Multimodal Approach for Hateful Meme Classification
نویسندگان
چکیده
منابع مشابه
Sequential Pattern Classification without Explicit Feature Extraction
Feature selection, representation and extraction are integral to statistical pattern recognition systems. Usually features are represented as vectors that capture expert knowledge of measurable discriminative properties of the classes to be distinguished. The feature selection process entails manual expert involvement and repeated experiments. Automatic feature selection is necessary when (i) e...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملFeature Extraction for Classification Using Statistical Networks
In a classification problem, quite often the dimension of the measurement vector is large. Some of these measurements may not be important for separating the classes. Removal of these measurement variables not only reduces the computational cost but also leads to better understanding of class separability. There are some methods in the existing literature for reducing the dimensionality of a cl...
متن کاملOpinion Feature Extraction Using Class Sequential Rules
The paper studies the problem of analyzing user comments and reviews of products sold online. Analyzing such reviews and producing a summary of them is very useful to both potential customers and product manufacturers. By analyzing reviews, we mean to extract features of products (also called opinion features) that have been commented by reviewers and determine whether the opinions are positive...
متن کاملSequential Feature Extraction Using Information-Theoretic Learning
A classification system typically includes both a feature extractor and a classifier. The two components can be trained either sequentially or simultaneously. The former option has an implementation advantage since the extractor is trained independently of the classifier, but it is hindered by the suboptimality of feature selection. Simultaneous training has the advantage of minimizing classifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2021
ISSN: 1099-0526,1076-2787
DOI: 10.1155/2021/5510253